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SEPARATION AND PURIFICATION METHODS, 4(2), 215-266 (1975) 

CYCLING ZONE SEPARATIONS 

P.C. Wmkat, J.C. Dare, and W.C. Nelson 
Departmant of Chemical Engineering 

Purdue University, West Lafayet te ,  I N  47907 

This article discusses cycling zone separat ions f o r  the reader 
not already fami l ia r  with cyc l ic  separations. Two models, the 
counter-current d i s t r i b u t i o n  model m d  the l o c a l  equilibrium 
model, are developed i n  depth and used t o  explain and predic t  both 
s ingle  component and multi-component reparations. Both the d i r e c t  
mode and t r a v e l i n g  wme mode of operat ion are t reated.  
m n t a l  r e s u l t s  u t i l i z i n g  both temperature and concentration as 
thermodynamic var iables  are preeented and compared with t h e o r e t i c a l  
predict ions f o r  s ing le  canponent separations. 
separat ions i n  both s ingle  component and multi-component systeme 

Experi- 

Conditions for  good 

are outlined. 
previously preeented. 

Soma of the  e x p e r i m n t a l  r e s u l t s  have 

INTRODUCTION 

Recently, there  haa been considerable interest 

not been 

n c y c l i c  
separat ion proceases which allow f o r  continuous or send-continuous 
feed t o  chromatographic o r  adsorption eyetens, These processes 
much as pressure-swing adsorption, p a r u m t r i c  pumping, and 
cycling zone adsorption u t i l i z e  the per iodic  var ia t ion  of a thermo- 
dynamic var iab le  t o  force the separat ion while feed is added 
cmtinuously o r  send-continuously instead of as a pulse  as i s  
collmon in etandard elut ion.  
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216 WANKAT, DORE, AND N n S O N  

The f i r s t  c y c l i c  separat ion processes were developed i n  the 
1 late 1950'8. In  1959, Skarstrom invented the process ca l led  

hea t less  adsorption o r  prereure-swing adrorption. 
adsorption of so lu te  from a gas e t r e m  war done a t  a high presrure  
and desorption w u  done at low pressures. Thus, a t  high mass f l a v  
rates the s o l u t e  w a s  held up and the  e x i t  gas wan pur i f ied .  
low m a a s  flow rates the  bed could be purged s ince t h e  eolute  wan 
released. 

For the  separat ion of l iqu ids ,  presrure  changes have only a 

small e f f e c t  on the  d is t r ibu t ion  coef f ic ien ts .  However, a large 
e f f e c t  can be produced by w i n g  temperature changes. 
a c y c l i c  proctaas f o r  l i q u i d  reparat ion ca l led  p a r m e t r i c  pumping 
wan developed by Wilhelm and h i s  coworkers.2 I n  t h i s  technique 
the f l u i d  t o  be separated WM pumped up through a s o l i d  s ta t ionary  
adrorbent i n t o  a reservoi r  and then dawn through the  bed i n t o  a 

aecond reservoir. This cycle w a s  repeated. I n  t h e  or ig ina l  mode 
of operation the f l u i d  i n  the  upper reservoir w a s  cooled whila 
t h e  f l u i d  in the  laver  reservoir w a s  heated. Since the  adsorbent 
held so lu te  when the  f l u i d  WM cool, so lu te  was held aa t h e  cold 
f l u i d  w u  pumped down t o  the  lower reservoir .  Similar ly ,  so lu te  
v u  re leased when the  hot  f l u i d  was pumped up t o  the  upper reservoir .  
Under i d e a l  conditions, eventually all the  so lu te  found its way i n t o  
the  upper reservoi r  and a separat ion WM produced. 

In  the la te  1 9 6 0 ' ~ ~  researchers  questioned whether flow 
reversa l  w u  ac tua l ly  necessary f o r  a separation s ince,  as e batch 
o r  semi-continuous operation, production rates were l imited using 
parametric pumping. 
continuous technique ca l led  cycling zone adsorption i n  1969. 
t h i s  process the f l u i d  t o  be separated wan pumped i n  one d i rec t ion  
through a series of colwms and the  technique w a s  appl icable  f o r  
reparation8 involving e i t h e r  g u e a  or l iquids .  
adsorption is the rubject  of t h i s  paper. 

4 discussed i n  a recent review by Wankat. 

obtained through a b r i e f  physical  descr ipt ion of t h e  process. 

In  t h i s  technique 

A t  

In  1966, 

Pigford, at. a1,3 developed an e s s e n t i a l l y  
I n  

Cycling zone 
The o ther  techniques are 

An i n t u i t i v e  understanding of cycling zone adsorption can be 
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CYCLING ZONE SEPARATIONS 217 

Consider a c o l m  packed with a s ta t ionary  so l id  adsorbent t h a t  
re ta ins  so lu te  at l a w  temperatures and releases the so lu te  a t  
high temperatures. Th. solution t o  be treated is fed continuously 
t o  the colum using equipment which causes its temperature t o  vary 
as a square wave s t a r t i ng  with a cold temperature fo r  ha l f  the 
cycle and then twitching to  a hot temperature for the remainder 
of the  cycle. For the f i r s t  half cycle, the mobile phase enters 
a t  a low temperature rmd the  solute is retained; tha t  is, its velo- 
c i t y  through the column is considerably slower than tha t  of the 
mobile phase. 
a very law solute concentration. 
concentration depends on how strongly the solute is retained. 
course, with long cycle t h e  the ex i t ing  solute concentration vould 
rise and f ina l ly  correspond t o  the feed concentration much like 
breakthrough curves i n  ion-exchange systems. For the lut half 
cycle mobile phase enters a t  a high temperature. 
through the  colrma the adsorbent naw releases the so lu te  t o  the  
f lu id  since the temperature is high. 
i n i t i a l l y  have a high so lu te  concentration. 
enough cycle tims the ex i t ing  so lu te  concentration would f a l l  
md  eventually correspond t o  the b e d  concentration. 
f o r  t h i s  is tha t  a l l  the so lu te  previously retained would have 

been releaeed and the so lu te  would be moving through the column 
unchanged. 
i t  would represent a crude exenple of cycling zone adsorption.' I n  
the  case above, telqperature is the thermodynamic variable tha t  is 
varied periodically. For i n l e t  f lu id  temperature varying period- 
i ca l ly ,  the out le t  solute concentration var ies  periodically. W i t h  

proper timing, a stream of high so lu te  concentration and a stream 
of low so lu te  concentration can be obtained with continuous feed. 

As a re su l t ,  the ex i t ing  f lu id  w i l l  i n i t i a l l y  have 
The length of t h i s  period of low 

Of 

Aa the f lu id  flows 

Thus, the ex i t ing  f lu id  w i l l  
Again, with long 

The r e u o n  

I f  the cycle described above were repeated continuously, 

Theoretically, cycling zone adsorption can be used t o  
aeparate multi-component mixtures a s  well as remove s ingle  
components from a solvent. Possible applications are widespread. 
b o n g  the systems already investigated with indus t r ia l  importance 
are the separation of salt  from sea  water, the  separation of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



218 WANKAT, WRE, AND NELSON 

oxygen f r m  air ,  and the multi-component separat ion of glucose 
and fructose from water. Aa a t t e n t i o n  i s  focused on t h e  world- 
wide problem of pol lu t ion ,  disease, and malnutr i t ion,  cycling 
zone adsorption could f i n d  laboratory and i n d u e t r i a l  appl ica t ioas  
i n  biochemicals, pharmaceuticals, food procersing, and waste 
treatment. 
of carcinogens from waste water. 
f ind  relevance i n  preparat ive multi-component biochemical 
separations. 

A s ingle  component separat ion could be the  ramoval 
Similar ly ,  thim technique might 

This paper present8 two d i f fe ren t  t h e o r e t i c a l  models t o  
explain cycling zone adsorption. 
provide a b a s i s  f o r  predict ing the  amount of separat ion possibla  
and character  of t h e  o u t l e t  concentration waves. The ar t ic le  
discusses the d i f fe ren t  operat ional  modes of the  technique end 
considers thermodynamic var iab les  i n  addi t ion t o  temperature f o r  
forcing a separation. Experimental r e s u l t s ,  including those with 

i n d u e t r i a l  relevance, are presented and compared with t h e o r a t i c a l  
predict ions for  s ing le  component separations. 
good separat ions i n  both s i n g l e  component end multicomponent 
s y s t e m  are introduced. The theore t ica l  models and most of the  
experimental r e s u l t s  have appeared previously. 
r e e u l t r  on removal of a dye from water i n  a counter-current- 
d i s t r i b u t i o n  apparatus using sodium carbonate concentration M the  
c y c l i c  var iab le ,  and new r e s u l t s  on removing sugars from water i n  
a chromatographic apparatus w i n g  pH as the cyc l ic  var iab le  are 
a l s o  presented. 

These two approaches attempt t o  

Conditions f o r  

New experimental 

EQUILIBRIUM STAGE MODEL 

Although cycling zone separat ion is generally considered a 
continuous separat ion,  a d i s c r e t e  transfer staged apparatus can 
be operated i n  the  cycling xone mode. 
apparatus provides a usefu l  model i n  explaining various aspects  
of continuous cycling zone separat ions,  espec ia l ly  zone broading. 
The staged model is based on the counter-current d i s t r i h u t i o n  (CCD) 

This d i s c r e t e  staged 
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CYCLING ZONE SEPARATIONS 219 

model of Craig and Craig.5 CCD has  proven a usefu l  technique f o r  

t h e  modeling of chromatographic separa t ions ,  although it h a  been 

used mainly as a separa t ion  technique i n  the  f i e l d  of biochemistry. 
The d i s c r e t e  s tage  model does not physical ly  represent  a continuous 
separa t ion ,  but i ts  r e s u l t s  apply q u a l i t a t i v e l y  t o  continuous flow 

systems. 
zone separat ions by Wankat.“”* 

The CCD model haa been extensively applied t o  cycl ing 

Figure 1 shows an apparatus o f  the CCD type which gives  a 
cycl ing zone separation. 

t h e  d i r e c t  o r  t r a v e l i n g  wave mode. 

s tages  i n  a region are held a t  the  same temperature, TH (hot) or 
TC (cold) ,  f o r  t h e  f i r s t  ha l f  of t h e  cycle  and are switched f o r  

t h e  second half  cycle. I n  the t rave l ing  wave mode of operat ion,  
t h e  tempera tun  

fashion by ex terna l  heat  exchangers. The f i r s t  system t o  be 
considered in d e t a i l  is d i r e c t  mode cycl ing zone extract ion.  

The separat ion may be operated i n  e i t h e r  

In  t h e  d i r e c t  mode, a l l  the  

of t h e  feed t o  each region is varied i n  a per iodic  

THE DIRECT M)DE --- 
The d i s c r e t e  staged system s h m  i n  Figure 1 has n x m s tages  

arranged i n t o  m regions with n s tages  per region. 
operated i n  temperature cycles with s o l u t e  being s tored  i n  t h e  

s ta t ionary  phase i n  regions of low temperature and r e j e c t e d  in 
regione of high temperature ( s y s t e m  of t h e  opposite type a r e  

The system is 

- ’- - 
Region I Region 2 Region m 

FIGURe 1 

6 Staged Cycling Zone Extract ion System f o r  Direct Mode. 
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220 WANKAT, DORE, AND NELSON 

car ta in ly  possible  but are not  discussed here  f o r  s implici ty) .  A 
change In temperature causes a change i n  the equilibrium d i s t r i -  

bution of s o l u t e  between t h e  a ta t lonary  and nubi le  phaee. 
region is operated a l t e r n a t e l y  hot  and cold while the following 

region Is operated a t  the opposite temperature. This a l t e r n a t i o n  
of temperatures i n  time and space causes t h e  s o l u t e  t o  be concen- 

t r a t e d  i n  h a l f  the  cycle and depleted in the  o ther  half  cycle. 
synchronizing the period of each cycle (number of  t r a n s f e r  s teps)  
with the n a t u r a l  rate of so lu te  movemnt a maximum separat ion may 

be achieved. 
should cause an increase In the  separation. 

The theory f o r  d i r e c t  mode cycling zone ex t rac t ion  i n  a 
staged system is  based heavi ly  on t h e  w e l l  es tabl ished theory of  
counter-current d i s t r ibu t ion .  
represented by the subrcr ip ts  (i, j) where i refers t o  t h e  s tage  

number i n  region j. 

(not necessar i ly  equal  halves) with S1 t r a n s f e r s  i n  the f i r s t  

ha l f  cycle mid S2 t r a n s f e r s  i n  the  second ha l f  f o r  a t o t a l  of S, 
t r a n s f e r  s teps .  

and the  volume of the s ta t ionary  phase, Vs, are assumed t o  be 
constant. 

s ta t ionary  phases respect ively.  
d i s t r i b u t i o n  coef f ic ien t  defined as K(T) - %/cS w i l l  be a 
function of temperature but  no t  concentration. The e f f e c t  of 

concentration on K(T) could be taken i n t o  account through the  

use of Langpluir adsorption i ~ o t h e r m e . ~  

m a s s  of s o l u t e  i n  stage i of region j ,  and f 
of s o l u t e  i n  the moving phase of stage i i n  region j a f t e r  

t r a n s f e r  s t e p  S of the cycle. 

A given 

By 

In addi t ion,  an increase i n  t h e  number of regions 

Each s tage s h a m  in Figure 1 is 

The cycles are divided i n t o  cycle "halves" 

The volume of the w v i n g  phase i n  each s tage ,  VM, 

% and cs represent the concentration of the moving and 

For the  present ca lcu la t ion ,  the 

i s  t h e  
i . 1 9 6  
i s  the  f rac t ion  

Final ly ,  M 

i ,1 

5 It has bean shown t h a t  the  t o t a l  f rac t ion  of  s o l u t e  i n  the  
moving phase a t  equilibrium is given by 
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CYCLING ZONE SEPARATIONS 221 

The f rac t ion  of s o l u t e  i n  the  s ta t ionary  phase can be expressed as 
1 - f  
fH o r  fC) as the  temperature v a r i e s ,  unlike CCD machines where 

It is important t o  note  t h a t  f changes (becomes 
i B j . 8 '  i , j , s  

a r e  constant. 
f i , j , s  and i , j , s  

Using t h i s  re la t ionship ,  a mass balance can be wr i t ten  t o  

ca lcu la te  the mass of so lu te  in s tage  ( i , j )  a f t e r  6 t r a n s f e r  
s teps .  The mass of so lu te  i n  s tage  ( i , j )  a f t e r  t r a n s f e r  6 is 

equal t o  the  amount of so lu te  t ransfer red  in with the moving 

phase from stage (I-1, j )  plus  the anuunt of so lu te  l e f t  behind 
in the s ta t ionary  phase of s tage ( i , j ) .  I f  i + 1, t h i s  .mass 

balance is 

n i , j , s  - ( f i - l , j , s - l )  Mi-l, j,s-1 + ( l - f i , , , s - l )  Mi,j,s-l 

M 1, j,s ( fn , j - l , s - l )  Mn,j ,s- l  + ( l  - f l , j , s - l )  %,j,s-l 

Ml,l,s 'Feed " M + ( l  - f l , l , s -1)  Ml,l,s-l (4) 

(2) 

I f  i - 1 but j + 1, 

(3)  

Final ly ,  i f  i - 1 and j - 1 

where cFeed is the concentration of so lu te  in t h e  feed. 
po in t ,  one would l i k e  t o  know the  concentration of product 

leaving s tage  (n,m) a f t e r  each t r a n s f e r  s tep.  

A t  t h i s  

A straightforward solut ion may be obtained by using equations 
(21, (31,  and (4) as recursion r e l a t i o n s  with the i n i t i a l  

condition of no so lu te  i n  a l l  the stages. 
addi t iona l  subscr ipt  is needed in these equations t o  count the 

number of cycles. 

Cycling zone system w i l l  eventually reach a l imit ing repeat ing 
state, where each cycle is an exact repeat of the cycle before 

it. This has been shown both experimentally and theore t ica l ly .  
For the study of only the  repeating state, a d i f fe ren t  so lu t ion  

technique may be employed which is discuased i n  d e t a i l  elsewhere. 
Even with the  repeating state assumption, t h e  solut ion is a 

When t h i s  is done, an 

This cycle subscr ipt  is not used because the 

6 

function of s i x  var iable8 -- n, m, S1, S2, fH, cmd fC. Before 
moving on t o  some resu l ta  f o r  tho d i r e c t  mode system, a qual i ta-  

t i v e  f e e l  f o r  what can be expected would be helpful. The key 
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WANKAT, DORE, AND NELSON 222 

fac tor  in t h i s  separaticm i s  the  rate of movement of the molute 
through the system. Since f is the  f rac t ion  of so lu te  i n  the  
moving phaae, the average dis tance that a eolute  molecule can 
move is f x (number of t r a n s f e r  s teps) .  
when the temperature is changed and so lu te  is e i t h e r  rejected o r  
s tored  by the s ta t ionary  phase. 
oach so lu te  molecule should undergo one and only one temperature 
chap in each region. 

A separat ion is forced 

To get  t h e  maximum separat ion 

(5) f x ( n u d e r  of t r a n s f e r  s teps)  I 
(number of s tages  region) 

However, f is not constant and var ies  between the  l i m i t s  fH and fC 

t o  give the  relat ionship 
( n u d e r  of s tages l reg ionl  > number of t r a n s f e r s  > - hal f  cycle - 

f C  

fH 

number of s tageslregion 

Thie simple argument based on the  veloci ty  of eo lu te  moving 
through the  system does a good job of predict ing t h e  separat ion 
behavior. 
chromatography. 

Note t h a t  t h i s  is e r e e n t i a l l y  the re ten t ion  argument of 

To i l l u s t r a t e  the appl icat ion of the  direct.mode staged 
system, theore t ica l  and e x p e r i m n t a l  r e s u l t s  are presented f o r  t h e  
diethylenine-toluene-water system. 
m d  water is obtained when the diethylamina s e l e c t i v e l y  d i s t r i b u t e s  
between the  s ta t ionary  toluene phase and the  moving water phase. 
The object ive is t o  concentrate t h e  diethylamine i n  ha l f  the  
water phaee and pur i fy  the remaining water. 
s tudy is convenient because there  
d i s t r i b u t i o n  coeff ic ient  with temperature and hence very few 
s tages  are required. 
glaas centr i fuge test tubes with t h e  moving phase t ransfer red  
f r a n  s tage t o  s tage with a syringa. 

s tage model has been prograrmd on a computer. 
r e s u l t s  f o r  t h i s  model are presented i n  Figures 2 - 6 and are 

A separat ion of diethylamina 

The system under 
i e  a la rge  change in  the  

The apparatus used consisted of stoppered 

6 

The unsteady a t a t e  so lu t ion  of equation (2) f o r  the d iacre te  
The theore t ica l  
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CYCLING ZONE SEPARATIONS 223 

compared t o  experimental r e s u l t s  i n  Figure 7. 

of t ransfers /ha l f  cycle, the  e f f e c t  of t h e  number of t r a n s f e r  
s teps/half  cycle, t h e  e f f e c t  of changing f H  and fC, the  e f f e c t  
of more regions o r  more s tages/regions,  and f i n a l l y  the agreement 
between theory and experiment were studied. 

The optimum number 

Figures 2 t o  4 show the  product concentration over an 
e n t i r e  cycle f o r  a system with 5 stages/region , 4 regions, 

f C  - .50, and fH - .60. 
10, 1 7 ,  and 28 t ransfers  per  ha l f  cycle. The purpose of these 
p l o t s  is t o  show the  importance of timing the concentration waves 

t o  e n t e r  a region i n  sequence with heat ing and cooling. 
these f igures ,  10 t r a n s f e r s  per ha l f  cycle gives t h e  best  separa- 
t i o n  and 17 the worst. With 10 t r a n s f e r s  per  h a l f  cycle, the 
n a t u r a l  rate of movement of the so lu te  is sequenced with t h e  
changes i n  temperature of each region, and equation ( 6 )  is 
s a t i s f i e d .  Conversely, a t  17 t r a n s f e r s  per  ha l f  cycle, there  is 
a considerable cancel la t ion e f f e c t .  
s ince i t  shows approximately one and one ha l f  complete separat ion 
waves e x i t i n g  from the system f o r  each ha l f  cycle. 
Figure 2 t h a t  the concentration is a t  a maximum when the  product 
is leaving t h e  hot region. 

Synxnetric cycles have been used with 

Comparing 

Figure 4 is i n t e r e s t i n g  

It is c l e a r  i n  

Figure 5 shown the maximum and minimum product concentration 
This predic t s  p lo t ted  versus the number of  t ransfers /ha l f  cycle. 

a maximum separat ion a t  10 t ransfers /ha l f  cycle and a minimum 
separat ion at 17 t ransfers /ha l f  cycle which is i n  agreement with 
Figures 2 and 3. Figures 2 ,  3, and 4 can be in te rpre ted  as 
having one, two, o r  three canplete waves e x i t i n g  from the system 
f o r  each f u l l  cycle. With one wave there  i s  mnximum separat ion,  
with two waves maximum in te r fe rence ,  and with three  waves sane 

in te r fe rence  and some separation. For a s ingle  region device, 
peak-to-peak separat ions do not  change with the number of 
t ransfers /cyc le  s ince  there  is no timing of subsequent regions. 
However, when the cycle is too long i n  a s i n g l e  region, some 

so lu te  molecules pass completely through the  region without a 
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Product Concentrations for a Comlete Cvcle in Direct Mode: 
5 sta siregion, 4 regions, fC - .5, fH - .6,  10 trana.fem/half 
cycle. 8& 
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I I 1 I I I  

5 10 5 10 
LEAVING MOT REGION LEAVING COLD REGION - 

TRANSFER STEP NUMBER 

FIGURE 3 

Product Concentrations for a Camolete Cvcle in Direct Mode: 
~ ~~ 

5 stagedregion, 4 regions, fC - . 5 ,  fH - . 6 ,  17 tranafers/half 
cycle.6 

change in  temperature and are not separated. 
shoulders appear on the concentration plots and the average 
meparation is decreased. 
i f  equation (6) is satisfied. 

As a result, 

Again the beet separation is acheived 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



I I I I  I I I 
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10 

28 28 

10 20 
LEAVING COLD REGION *LEAVING HOT REGION 

TRANSFER STEP NUMBER 
FIGURE 4 

Product Coacentrationr for a Complete Cycle in Direct Mode: 
5 rtag rhegion, 4 regionr, f C  - . 5 ,  fH - . 6 ,  20 trwrferr/half cycle. t 
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MINIMUM CONC. LEAVING SYSTEM 
WHILE LAST REGION IS COLD 

MAXIMUM CONC. LEAVING SYSTEM 
WHILE LAST REGION IS HOT 

NUMBER OF TRANSFERS PER HALF CYCLE 
FIGURE 5 

Maxima and Minima Product Concentrations as a Function of the 
Number of Transfers per Half Cycle in Direct Mode: 
8 regions, fC  - . 5 ,  fH - .6.' 

5 stagesfregion, 
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228 WANKAT, DORE, AND NELSON 

The e f f e c t  of varying f C  and fH when fH > f C  can be seen by 
comparing Figure 6 t o  Figure 5 .  AE predicted by equation (61, the  

maxim and minima are  sh i f ted .  I n  addition, there  is less 
separat ion achieved a t  the lover  f values even though the r a t i o  

r MAXIMUM CONC. LEAVING SYSTEM 
WHILE LAST REGION I S  HOT \ 

MINIMUM CONC. LEAVING / SYSTEM WHILE LAST REGION 

I I 1 I I I 1 
10 20 30 40 50 60 

NUMBER OF TRANSFERS PER HALF CYCLE 
FIGURE 6 

Maxima and Minima Product Concentratioas as a Function of the  
Number of Tranafera per Half p c l e  i n  Direct Mode: 
4 regions, fC - .25, fH - .3 .  

5 stagea/ragion,  
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CYCLING ZONE SEPARATIONS 229 

of f C / f H  rernains unchanged. Also, a l a r g e r  number of t r a n s f e r  
s t e p s  are required f o r  the  optimum separat ion a t  low f values. 

Results are avai lable  indicat ing the e f f e c t  of the number of 
regions and the number of stages/region. Increasing t h e  number 
of regions increases  the eeparation while having l i t t l e  e f f e c t  on 
the  locat ion of t h e  maxima and minima. Increasing the number of 
stages/region both increases  separat ion and changes the loca t ion  
of the maxima and minima. 
a trade off  
of regions. 

With a f ixed number of stages ,  there  is 
between the number of s tages/region and the number 

A comparison of experimental and t h e o r e t i c a l  r e s u l t s  is shown 
in Figure 7. The experimantal r e s u l t s  agree q u a l i t a t i v e l y  with 
theore t ica l  predict ions,  except t h a t  the concentration jump when 
the  temperature changed was much smaller than predicted. 
theore t ica l  r e s u l t s  pred ic t  a greater  separat ion than w a s  acheived. 
This difference might be expected s ince the  theore t ica l  model did 
not  account f o r  the  non-constant d i s t r ibu t ion  coef f ic ien t  or the  

evaporation losses  during experimentation. 
and the probabi l i ty  explanation f o r  rate of w v e m n t  of s o l u t e  
appear t o  explain the major e f f e c t s  t h a t  occurred. 

The 

I n  general, the  theory 

TRAVELING WAVE MODE 

The equilibrium staged system f o r  cycling zone separat ions 
can be extended t o  the  t ravel ing wave w d e  of operation.’ 
b a s i c  appara tw f o r  the t rave l ing  wave mode, shown i n  Figure 8, 

is very similar t o  t h a t  ured f o r  the  d i r e c t  w d e  i n  Figure 1. 
The apparatus cons is t s  of a seriee of w e l l  insulated equi l ibr ium 
s tages  or  test tubes arranged i n t o  regions with heat  exchangers 
between regions. 
compo8ition but its temperature v a r i e s  as a square wave s t a r t i n g  
a t  some hot  temperature, %, f o r  h a l f  the cycle and then w i t c h i n g  
t o  the cold temperature, TC, for  the  remainder of the  cycle. 
streams coming from region 1 may be taken ae products, o r  they 
may be fed t o  a heat  exchenger and then t o  a second region. 

The 

The feed t o  the appara tw is of constant 

The 

The 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



I .4 

'I I . C  

1.2 

6 z 1 . 1  
0 
0 
P w 1.0 

\ 

z 

k! 

6 O 9  

8 
.8 

I- 
0 
3 
P 

Q. 

0 -7 a 

.6 

.5 

- 
- THEORY: fc 8 ,824 

0 

- 

0 

.. PERIMENT : WATER- 
TOLUENE DIETHYLAMINE 

- 

- 

I I I I I I  I I I I I I 

I L E A t l N G  "nT4REG:N - y L E A V l N B  COLD REGION 

TRANSFER STEP NUMBER 
FIGURE 7 

Colnpuison Between CCD Direct Mode Theory m d  Experiumnt for 
Diothyl.mine-Water Tolu e Sysm. 6 rtager/region, 1 region, 
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w 

Region I Region 2 
Region 

m 
Heat Heat Hoot 

E xc hon ger Exchanger Exchanger 
I 2 in- I 

FIGURE 8 

7 Staged Cycling Zone System for  Traveling Wave Mode. 

heat  exchanger between regions reforms t h e  temperature wave and 
adjusts the  temperature of the  feed t o  region 2 t o  be 180. ou t  

of phase with the  feed t o  region 1. 
The per iodic  a l te rna t ion  of feed temperature causes a 

temperature wave i n  the  system. The travel$ng temperature w8va 
causes changes i n  t h e  e q u i l i b r i m  d is t r ibu t ion  coef f ic ien t  with 
t h e  s ta t ionary  phase re jec t ing  s o l u t e  when hot and s t o r i n g  s o l u t e  
when cold. 
s ta t ionary  phase and back again. so lu te  i r  concentrated in one 
p a r t  of the  cycle m d  depleted in the  o ther  p a r t  r e s u l t i n g  i n  a 

separation. 
used t o  change the e q u i l i b r i m  d i s t r i b u t i o n  of the  s o l u t e  m d  cause 
separat ion i n  the  t rave l ing  w a v e  mode. 
s t rength  have been used and w i l l  be discussed later. 

t rave l ing  wave mode based on CCD theory f o l l m s  the s.mc l i n e s  as 
t h a t  f o r  the  d i r e c t  mode sys tem.  

A s  the  s o l u t e  movei from t h e  moving phase t o  the  

Thermodynanic var iables  o ther  than temperature can be 

I n  p a r t i c u l a r ,  pH and ion 

The t h e o r e t i c a l  ana lys i s  of cycl ing zone separat ion i n  t h e  

The var iab les  Sa. SC. VM, 

are defined the  sam here cs' Ki.j.s* Ti.j,s* M i , j , r p  i . j  ,a 
am f o r  the  d i r e c t  mode cue .  I n  addi t ion,  severa l  o ther  var iab les  
are needed f o r  t h e  energy balances. CpM. Cps* and CpT are t h e  
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232 WANKAT, DORE, AND NELSON 

heat  capac i t ies  of the  moving phase, the s ta t ionary  phase, and the 
test tube, reapectively. 
a w i n g  and s ta t ionary  phase and the  weight of the test tube, 
respectively. 
are constant. 

pM, ps, and WT are the d e n s i t i e s  of the  

It is msumed t h a t  t h e  denai t iea  and heat  capac i t ies  

The f rac t ion  of so lu te  i n  the moving phase of s tage  (1.1) 
i e  given by equation (1) of the previoua 

1.1 ,s' a f t e r  s t ransfers ,  f 

section. The mass balances used t o  calculate the  mass of s o l u t e  

i n  s tage  (i ,j)  a f t e r  t r a n s f e r  s t e p  s are the maam aa those given 
for  the  d i r e c t  mode i n  equations (2-4). 
(2-4) must be calculated ueing the temperature of each stage. 

The f values i n  equations 

Assuming no heat l o s s  from the separat ion system t o  the 
environment, the s tage  temperatures may be determined with energy 
balances. These energy balances f o r  w e l l  insulated s tager  can be 
developed by def ining A 8s the  f rac t ion  of energy i n  the moving 
phase f o r  any stage. 

determine f 

By an analysis  similar t o  t h a t  used t o  

A can be found m: 
i , j  ,a' 

where, with the aseumptions made here ,  A is independent of both 
temperature and concentretion. The energy i n  s tage ( i , j )  a f t e r  
t ransfer  s equals the sum of the energy t ransfered from the pravious 
s tage i n  the  moving phme and the  energy l e f t  i n  t h e  s tage  i n  both 
the  s ta t ionary  phase and the test tube. Using equation (7) t o  
def ine A, t h i s  energy balance can be expressed i n  term of tempera- 
tu re  f o r  i + 1 aa 

i,l ,s 
I f i - l b u t  j + l  

T - A T  I-l,j,s-1 + (1  - A) Ti,j,s-l ( 8) 

( 9 )  T l , j , s  - A HE, j -1 , s  + (' - A) 'l,j,s-l 
I f  i - 1 and J - 1 

is the  temperature of material leaving heat HE, j-1, s where T 
exchanger j-1 f o r  t r a n s f e r  s t e p  I, and TFS is the temperature of 
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CYCLING ZONE SEPARATIONS 233 

the  feed f o r  t ransfer  s t e p  S. 
t ions  made previously, the energy balances i n  equations (8) ,  
(91,  and (10) are independent of the  m a s s  balances and can be 
solved separately f o r  any desired temperature, T Using 

these temperatures, the f values can be calculated f o r  each 

stage and t ransfer  s tep ,  and then the mass balances may be solved. 

Because of the  r e s t r i c t i v e  assump- 

i , j ,s* 

The so lu t ion  method f o r  the  t rave l ing  wave mode is analogous 

t o  the one used f o r  the d i r e c t  nude. 
so lu t ion  can be obtained using equations (8-10) and (2-4) as 
recursion r e l a t i o n s  with the  appropriate i n i t i a l  conditions. 
indicated previously, a l imi t ing  repeating state solut ion can 

be obtained f o r  a system of t h i s  type.6’’ 

Using an argument s i m i l a r  t o  the retent ion argument of  

chromatography,10 the  speed of both the  concentration and thermal 

waves can be deduced. The average dis tance tha t  s o l u t e  w i l l  
move is f x (number of t r a n s f e r  s teps) .  

def in i t ion  of f and A, aquatione (2) and (7) .  it  is clear t h a t  A 
is a measure of the  speed of  the thermal wave. The dis tance the 

thermal wave t r a v e l s  is A x (number of t r a n s f e r  s teps) .  
A - 1.0, the  thermal wave w i l l  spread by the same band-spreading 

phenomena which spreads so lu te  bands i n  chromatography and CCD. 
For low values of A, the  thermal wave moves slowly and spreads 

out considerably giving very l i t t l e  separation. 
the thermal waves w i l l  be sharp and w i l l  t r a v e l  f a s t e r  than the 

Concentration waves. As t h e  hot  f ront  of the thermal wave 
advances through a region, the f rac t ion  of so lu te  i n  the moving 

phase increases  sharply causing a concentration wave of high 
so lu te  content t o  form behind the thermal wave. Behind the 

cold f ront  of the thermal wave, a slow moving low concentration 

wave w i l l  form. Thus a considerable separat ion can be achieved 

by co l lec t ing  separately t h e  two concentration waves. 

A s t r a i g h t  forward i t e r a t i v e  

AB 

By comparing t h e  

Unless 

I f  A is near  1.0, 

In  order  t o  study the  v a l i d i t y  of these t h e o r e t i c a l  
predict ions,  the diethyleadne-water-toluene syrtem was studied i n  

the t rave l ing  wave mode of cycling zone extract ion.  An i n  t h e  
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234 WANKAT, DORE, AND NELSON 

exper imnta l  study f o r  the d i r e c t  mode, water was the mobile 
phase, toluene w a s  t h e  s ta t ionary  phare, and diethylamine w a s  the 
s o l u t e  t h a t  d i s t r i b u t e s  between the  two phases. The experimental 
apparatus consisted of test tubes held i n  a styrofocrm insu la t ing  
holder with a syr inge for  t ransfar ing  the mobile phase. Several 
types of glass  and p l a s t i c  test tubes were used f o r  s tages  s ince 
the type of test tube determined t h e  value of A. In  each 
experimental run, the  system used had one region with 3 s t a g e  and 
with 4 t r a n s f e r s  per  half  cycle. The d is t r ibu t ion  coef f ic ien t  w a s  
curve f i t t e d  to  account f o r  both temperature and concentration 
dependence. 
avai lable  in the  or ig ina l  paper. 

%re information on the  experiment and the r e s u l t s  is 
7 

For the  t rave l ing  wave mode, t h e  theore t ica l  r e s u l t s  are 
presented f i r s t  i n  Figures 9-11 and the experimental r e s u l t s  
are compared with the theore t ica l  predict ions in Figure 12. 
product temperatures and concentrations are shown in Figure 9 

for  a system with 1 region and 40 s tages .  
is a square wave, but the o u t l e t  temperature is no longer a 

square wave and is delayed behind the  square wave. 
concentration wave is delayed behind the thermal wave with a maximum 

separat ion,  a 
of 9.99. In canparison 
d i r e c t  mode achieved separations of amX - 1.78 with 1 region 
and amax - 6.62 with 4 regions. 
t ravel ing wave mode is c l e a r l y  grea te r  than what could be 
achieved in the  d i r e c t  mode. By increasing the number of s tages  
f o r  a s ingle  region t ravel ing mode device t o  160 s tages ,  the 
separat ion can be increased t o  a - 108.3. 

The 

The i n l e t  temperature 

The o u t l e t  

( - maximum concentration/minimum concentration) 
a system with 40 s tages  operated i n  the 

max 

The separat ion obtained f o r  the 

IWX 
The separation f o r  a given system can be increased by opt- 

imizing the thermal wave veloci ty  A. A can be var ied t o  optimize 
the Separation by changing the tube weight or heat  capacity. In 
Figure 10, amax is Plot ted  versus the  t ravel ing wave ve loc i ty  f o r  
a 40-stage system. 
a - 10.8. 
s ince the separat ion is reduced s igni f icant ly .  

There i s  an optimum value of 0.67 for  A with 
Ei ther  high or law values of A are t o  be avoided 

The reason f o r  
lDllX 
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CYCLING ZONE SEPARATIONS 235 

FIGURE 9 

Product Concentrations and Temperatures for  a Complete Traveling 
Wave Cycle: 40 stages/region,  1 region, TC = 0, 3 - 50, Sc - 
SH 40, K 1.0 + 0.02T. A - 0.6.7 

poor separat ions at low values of A is evident from the temperature 
p r o f i l e s  i n  Figure 11. 
the thermal wave becomes more d i f fuse  and the temperature 
differences decrease. When t h i s  occurs, the  var ia t ions  of the 
d i s t r i b u t i o n  coef f ic ien t  are minimized and there  is less dr iving 
force  f o r  separation. 

As the thermal wave ve loc i ty  is decreaeed, 

The reason f o r  a separat ion maximrrm at an intermediate value 
of A, aa shown i n  Figure 10, is q u i t e  complex. 
the  separat ion t o  continue increasing as A approaches 1.0 s ince 
the thermal wave approaches a square wave with very sharp 
differences and correspondingly l a r g e  d i f  ferences i n  the  d is t r ibu-  
t ion  coeff ic ient .  However, the maximum separat ion ac tua l ly  occurs 

One would expect 
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FIGUBE 10 

Effect  of Thermal Wave Velocity, A, on Maximum Separation: 
s tages  regioa, 1 region, TC - 0, % - 50, Sc - S 

40 - 50, K - 1.0 + 
0.02T. 5 H 

when the thermal wave ve loc i ty  is between the  ve loc i ty  of t h e  two 
cmcent ra t ion  wave v e l o c i t i e s ,  fC c A fR. An explanation of t h l s  

w i l l  be delayed u n t i l  the  second w d e l ,  t h e  loca l  equilibrium 
theory is discussed. 

Theoret ical  calculat ions w e r e  a l s o  made t o  etudy the  e f f e c t e  

Ueing of var ia t ion  of K values where smaller f valuer were wed. 
an equation f o r  K(T) of K - 0.3333 + 0.003333T, t h e  resu l tan t  f 
values are f c  = 0.25 and fH - 0.333. 
is unchanged from earlier cases, there  is less eeparation et the  
optimum conditione. 
which 1s an expected s ince f c  < A 

conditions is about half  as great f o r  the  cam of laver  f values. 
A s imi la r  r e s u l t  w a s  obtained f o r  the  d i r e c t  mode of  operation, 

the number of regions increased the separation. Similarly, t h e  

Although the  r a t i o  of fc / fh  

The optimum separation is obtained a t  A - 0.3 
fh. The separat ion a t  optimum 

For the d i r e c t  mode of operation it WM shown t h a t  increasing 
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I I I I I 1 1 I 
k 1 O  HOT CABOFEED T O T  

TRANSFER STEP NUMBER 
FIGURE 11 

Product Temperature Prof i lee  f o r  Several Valuee of Thermal Wave 
Velocity: 
40, K = 1.0 + 0.02T. 40 stagee/region, 1 region, TC = 0,  TH = 50, Sc = SH = 

t ravel ing wave mode ehowed l a r g e r  reparatione with more regions 

an w e l l  ae an optimum number of t r m e f e r e  per  ha l f  cycle. 
optimum eeparation f o r  th in  eyetem with 4 regions and 10 etagee 

per  region w s e  amax = 20.9. 

The 

I t  i e  c lear  tha t  the  mult iple  regions 
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238 WANKAT, DORE, AND NELSON 

produce nure separat ion,  and tha t  sorm optimum number of regionr 
e x i r t  for  a given number of s tager .  

The theore t ica l  m d  experimantal r e s u l t r  are compared in 
Figure 12. This f igure  is f o r  an a l l  g l w r  syrtem where A - ,466. 

TRANSFER STEP NUMBER 

FIGURE 12 

Comparison of Experimantal and Thooretical r e r u l t 8  fo r  an A l l -  
G l u m  Syrtem i n  Traveling Wave &&, Experbent :  diethylamine- 
water-toluene, T - 0, - 28, 3 r t a p r / r e g i o n ,  1 region, 
Sc - SH - 4, Thegry: A 5  0.466, K - 4.63 - 0.163T + 0.001707T. 
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CYCLING ZONE SEPARATIONS 239 

There is good q u a l i t a t i v e  agreement, but  less separat ion w a s  
achieved than expected. 
theory might be expected s ince  the  theore t ica l  model d id  not  
account f o r  the concentration dependence of the d i s t r i b u t i o n  

coef f ic ien t ,  the l o s s  by evaporation, and the  heat  loss  o r  gain of 
t h e  system. However ,  t h i s  theory is q u i t e  useful  i n  pred ic t ing  the 
e f f e c t  of changing var iab les  and operat ing condition and optimizing 
the  separation. 

The differences between experiment and 

As indicated previously, themdynamic var iab les  o t h e r  than 
temperature can be cycled t o  force a separat ion i n  the  t r a v e l i n g  
wave mode of cycling zone extract ion.  
change i n  ion concentration can change the  d is t r ibu t ion  of a 
so lu te  between two phases f o r  c e r t a i n  s y s t e m .  

concentration of t h e  feed t o  a cycl ing zone ex t rac tor ,  i t  should 
be possible  t o  achieve a separation. 

It  is w e l l  known t h a t  a 

By varying the  ion  

In order  t o  illustrate the appl icat ion of ion concentration 
t o  cycling zone separat ions,  experiments were run t o  separate  
phenol red from water using 1-butanol M a s ta t ionary  phase. 
These experimental r e s u l t s  have not been presented previously. 
The concentration of sodium carbonate i n  the  feed w a s  ubed aa the  
cyc l ic  variable. 
d i s t r i b u t i o n  coef f ic ien t  changes s i g n i f i c a n t l y  with ion concen- 
t r a t i o n  and the concentration of phenol red is e a s i l y  determined 
with a spectrophotometer. The feed t o  a CCD apparatus w a s  of 
constant phenol red composition but  the Na2 C03 concentration 
w a s  var ied as a square wave s t a r t i n g  a t  3.5N for  ha l f  the  cycle 
and then switching to  . l N  f o r  t h e  remainder of the  cycle. A t  low 
ion concentration the s ta t ionary  1-butanol phase r e j e c t s  s o l u t e ,  
and at high ion concentration the  so lu te  is s tored  i n  the 
s ta t ionary  phase. 

This chemical syitem w a e  chosen because the  

The experimental r e s u l t s  are shoam i n  Figure 13. A good 
separat ion is achieved and the p lo t  reiamblee those obtained f o r  
temperature cycling i n  the  t rave l ing  w a v e  mode. In Figure 13, a 
maximum separat ion of a - 39.0 w a s  obtained. For systems max 
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TRANSFER STEP NUMBER 

FIGURE 13 

Product Concentrations vs. Transfer Step Number with Sodium 
Carbonate Concentration aa the  Cyclic Variable. E x p e r h n t :  
phenol redrater-1-butanol ,  5 stages/region,  1 region, Low 
Na2W3 cancantration = O.W, High Na2m3 concentration = 3.5N, 
10 t ransfer  nteps per cycle. 

where the  d i r t r i b u t i o n  coef f ic ien t  is s i g n i f i c a n t l y  changed by ion 
ntrength, t h i s  technique could prove very useful .  

are f o r  d i s c r e t e  equilibrium staged aystema, they are q u a l i t a t i v e l y  
applicable t o  continuous flow s y s t e m .  
platem f o r  the continuous reparat ion i 8  r e l a t i v e l y  large,  there  i s  
good agreemnt  with t h i s  theory. The zone-broadening phenomena 
is w e l l  modeled by t h i r  ryrtem. 
r e s u l t s  presented here  are meant t o  e r t a b l i s h  a good i n t u i t i v e  
f e e l  f o r  how the separat ion occurs and haw i t  can be optimized. 

Although the theory and r e s u l t s  presented i n  t h i s  sec t ion  

I f  the  number of t h e o r e t i c a l  

I n  addi t ion,  the theory and 
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- LOCAL EQUILIBRIUM 
Theoret ical  Development 

241 

Counter-current d i s t r ibu t ion ,  although a simple thoory, waa 

not the or ig ina l  theory used t o  explain cycling zone adsorption. 

Baker and Pigford" presented a l o c a l  equilibrium model t o  

theore t ica l ly  explain t h e i r  new separat ion process. This loca l  

equilibrium model f o r  cycling zone adsorption was  an outgrowth 

of a similar model for  "paremetric pumping" developed by Pigford, 

- et. &.12 and provided a means f o r  evaluating fixed-bed experi- 

mental date. The following is a s implif ied discussion of the 

l o c a l  equilibrium model. 

Consider the process shown i n  Figure 14 i n  which a so lu te  of 

concentration, c flows through a fixed-bed of s o l i d  p a r t i c l e s  

of length L. 
e i t h e r  by heat ing and cooling the column w a l l s  as i n  Figure 14a 

( d i r e c t  mode) o r  by using a heat  exchanger t o  heat and cool the 

input  strean as i n  Figure 14b ( t rave l ing  wave mode). 

modes of operation, i n  t h i s  case, the  temperature i s  cycled i n  a 
square wave of frequency wf2n cycleelmin. between a cold tempera- 
t u r e ,  TC, and a hot temperature, TH. For column appl icat ions t h i s  

represents the  s a m  system as  Figures 1 o r  8 discussed previously. 

The above can be summarized aa a set of boundary conditions. For 

the t rave l ing  mode process, they are 

0' 
The temperature of the  bed is per iodica l ly  var ied,  

For both 

c -  c * z - 0 ,  t > 0 (11) 
0' 

T TC + (TH - TC) sq (wt); 0, t > 0 (12) 

For the  process described i n  Figure 14 Baker and Pigford 

Two of the  presented four m a n s  and energy balance equations. 

equations ware so lu te  and energy balances on the s o l i d  phase and 

two were  so lu te  and energy balances on both the f l u i d  and s o l i d  

phases. These latter two equations a r e  shown below. 

1 - a ) ( l  - E) 2+,  - ac - 
a 
3 at  '+ 
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242 WANKAT, DORE, AND NELSON 

n 

aT a'T 

- -  
1 2 3 4 

The above aquatione disregard r a d i a l  gradients  i n  ve loc i ty ,  
concentration, and temperature. The aquatione have been broken 
down i n t o  separate  par te .  
terme 1-3 represent accumlative contributione. The f i r s t  term is 
the  change i n  concentration with respect t o  time f o r  the mobile 
phase. 

f l u i d  trapped i n  the pores of the r o l i d  adrorbent, and the  t h i r d  
term reprerents  the  change i n  concentration for the  eo l id  
s ta t ionary  phaee. 
an inf in i tes imal  croea sec t ion  of the packed column. 
tern depicts  convective mama t r a n r f e r ;  t h a t  is, the comon 
(input - output) contribution. 
w e  t r a n s f e r  due t o  dispersion and diffuaion. 

For the  maer balance equation (131, 

The second term i e  the  change i n  concentration f o r  immobile 

Terme 4 and 5 dercr ibe the mee t r a n s f e r  for  
The fourth 

Final ly ,  the  f i f t h  term represente  

For the energy balance equation (14). team 1 and 2 represent 
accumla t ive  contributions. 
temperature of the  mobile phme with respect  t o  time. 
term describer temperature change8 with reepect t o  time f o r  the 
s ta t ionary  phame which include6 t h e  r o l i d  adeorbent and trapped 
immobile f luid.  
change with reepect t o  axial dietance, z ,  due t o  convection and 
t h e  fourth term expresses the  rate of temperature change an a 

r e s u l t  of dispers ion and diffusion.  
reprerents  the armunt of energy i n  t o m  of heat  t h a t  is t ransfer red  
from the rurroundingr t o  the colupm. 

The f i r s t  term ir the  change i n  
The second 

The t h i r d  term expreeree the rate of temperature 

F ina l ly ,  the f i f t h  term 

Following Baker and Pigford" thane equatione cm be 
simplifbed.4by applying severa l  mrmnptionr. I f  maas and energy 
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Y f  

243 

Yf 

Pocked o bsor bant 
bed 

Heating half -cycle Cooling halfccycle 

A 
yh 

First holf -cycle 

Heater 

A 
YJ 

Second ha If -cycle 

FIGURE 14 

Singla-Zone Operation of CyclinB Zone Absorber. 
Moda is Indicated by (a) above; (b) b e l w .  Il lustrates the 
Traveling Wave Mode. 

The Direct Wave 
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244 WAN'KAT, DORE, AND NELSON 

t r a n r f e r  rates are arrumed t o  be very high, then not  only i r  the  
immobilized f l u i d  i n  the porer i n  local equilibrium with t h e  
adsorbent but  a l l  f l u i d  and ao l id  phmer are i n  equilibrium 
(i.e., c - c , Tr - T).  
is a s r u e d  t o  be a function of temperature and concentration 
only and heat  capac i t ie r  and d e n r i t i e r  a re  arrumed t o  be 
independent of temperature and concentration. 

* 
Secondly, the r o l i d  phaae concentration 

(15) 
* 

4 f(TsC) f(Tr ,c  1 

Fina l ly ,  the  d i rpers ive  and diffueive tatme are neglected and t h e  
r implif ied aquatione for  l i n e a r  inotherme (q - A c ) reeul t .  

* 

where 
V 

a ( 1  - E) P,A 1 - a  
' C b l + l - a .  E +- a 

(18) 

(19) V 
'th 1 + ( 1  - a) [p, Cr ( 1  - c) + p f  Cf e]/pfCf a 

A - constant of proport ional i ty  for  the  l i n e a r  iaotherm and 

As shown previourly,  temperature and concentration move 
through a packed column i n  waver; in thin case, t h e  concantration 
weve  ve loc i ty  i r  given by pc and the  thermal wave ve loc i ty  i r  
given by pth. These wave v e l o c i t i e s  are adjustable  a d  depend on 
valuer f o r  the paranmtera i n  the denominator of each equation. 

i s  a function of temperature only. 

Ueing the boundary conditions given f o r  the  proceer i n  
Figure 14b the so lu t ion  t o  equation (17) i r  

dz 
d t  'th 
- (20) 

Note t h a t  equation (20) i r  a t o t a l d e r i v a t i v e  r ince  the  temperature 
dependence haa been eliminated. 
Figure 15 f o r  the  t rave l ing  wave procarr. 

The so lu t ion  i r  r h m  i n  
For the  d i r e c t  mode 
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CYCLING ZONE SEPARATIONS 245 

t ,  time 

FIGURE 15 
3 The Solut ion of the Energy Balance Equation, 

process ( f igure 148). pth * - and t h e  l i n e s  shown on Figure 15 
would then be v e r t i c a l .  Uote t h a t  at any p a r t i c u l a r  time, the  
column can contain several thermal regions, 
regions possible  increases  with column length and cycling 

frequency, and decreases with higher  values of uth. 
l i n e s  of s lope,  uth,  temperature is constunt. 

Baker and Pigford solved the so lu te  mass balance, equation 
(20) by using the  same boundary conditions as above and a technique 
known as the  method of charac te r i r t ics .  The s o h t i o n  Can be 
expressed aa 

The number of thermal 

Along the  

dz z -  p c  

and Figure (l6a) shows the so lu t ion  p lo t ted  f o r  the t r a w l i n g  
waw process. The so lu t ion  y ie lds  l i n e s  i n  the  f igure  ca l led  
charac te r i s t ics .  As a r e s u l t  of the method used t o  solve 
equation (161, the Concentration, c, dong there  c h a r a c t e r i e t i c r  
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t ,  time 

t ,  t ime 
FIGURE 16 

(a) above, Solution of Maaa Balance Equation; (b) below, 
Effluent va. Time for System Represented by (a).  
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CYCLING ZONE SEPARATIONS 247 

must remain constant. 
l i n e s  can a l r o  be thought of  aa t h e  path of an average s o l u t e  
molecule moving through the  column a t  a ve loc i ty ,  uC. 
i n t u i t i v e  f e e l  f o r  t h i s  so lu t ion  can be obtained by not ing t h a t  i f  
- = 0, equation (16) reduces t o  a form analagous t o  the energy 
balance equation, and thus ahould have a r i m i l a r  solut ion.  
within a thermal region = 0 and equation (20) and (21) are 
q u i t e  similar. Figure 16a shows t h a t  uc h a  d i f f e r e n t  values 
depending on the temperature of the  region. Adopting the convention 
that so lu te  is s tored  by the  s o l i d  phase a t  low temperature and 
released at high temperatures, the value of (A) i n  equation (18) 
w i l l  be l o w  when T = % and h i &  when T - TC. 
shows t h a t  t h i s ,  indeed, leads  t o  d i f f e r e n t  uc values and 

I n  a general renre ,  these c h a r a c t e r i s t i c  

An 

aT 
a t  

Indeed, 
aT 

Equation (18) 

H C  
lJc ' uc. 

When a c h a r a c t e r i s t i c  passer from a warm region i n t o  a cold 
one, or v i c e  versa, the thermal wave causes a d i rcont inui ty  t o  
e x i s t  a t  the  boundary. A t  t h i s  wave front  the t o t a l  maas doer 
not  change; licwever, the mass is red i r t r ibu ted .  For a l i n e a r  
isotherm Baker and Pigford derived the following equation f o r  t h i s  
red i r t r ibu t ion :  

'c 'th 
The concentration of s o l u t e  molecular changer by a f a c t o r  Q 

Likewise, the when passing from a warm region t o  a cold region. 
concentration changer by a fac tor  1/Q when passing from a cold 
region t o  a warm regim. I n t u i t i v e l y ,  t h i s  phenanenon i r  not 
d i f f i c u l t  t o  understand. Aa cold nolute  molecules of concentration, 
cc, are overtaken by a hot  thermal wave,  t h e  s ta t ionary  phase 
releaser s o l u t e  and the concentration instantaneoualy increases  t o  

%. When warm s o l u t e  moleculea, $1, are overtaken by a cold 
thermal wave, the s ta t ionary  phase s t o r e s  more r o l u t e  and the  
concentration instantaneoulry decreases t o  cc. 
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248 WANKAT, WRE, AND NELSON 

Figure 16b shows the exit concentration of s o l u t e  versus  
C H time based on the  values of  vth, yc, and vC represented QI 

Figure 16a f o r  t h e  process discussed i n  Figure 14b. 
where the  so lu te  concentration is co/Q represent  e x i t i n g  s o l u t e  
molecules which have been overtaken by only one hot  thermal wave. 

(Line 1) .  
e x i t i n g  s o l u t e  molecules which have been overtaken by only one 
cold thermal wave  (Line 2). 

e f f l u e n t  concentration is co, these s o l u t e  molecules were over- 
taken by two or a mult iple  of two thermal waves s ince  co(Q)(l /Q) - 
c 

connection with Figures 3 and 5 discussed earlier. 

The areas  

The areas where the s o l u t e  concentretion is coQ represent  

I n  the  case of areas  where t h e  

(Line 3). This is s i m i l a r  t o  t h e  in te r fe rence  reported i n  
0 

It  is now c l e a r  t h a t  the cycl ing frequency of  thermal waves 
is important. 
two thermal waves for  maximum separat ions.  Indeed, Baker and 
Pigford Showed t h a t  t h i s  c r i t e r i o n  provided the optimum separat ion 
f a c t o r  f o r  a one zone system. 

Idea l ly ,  no so lu te  molecule should be overtaken by 

In addi t ion t o  thermal wave frequency, another method e x i s t s  
Suppose a thermal wave can be made t o  f o r  maximizing separat ion.  

pass through t h e  bed a t  m y  veloc i ty  desired,  overr iding t h e  
n a t u r a l  wave. 
the  column at some a r b i t r a r y  ve loc i ty ,  pth, as done by 
Z h u k h ~ v i t i s k i i . ~ ~  Suppose f u r t h e r  t h a t  $ ' vth > vc. For 
t h i s  case, the  Separation fac tor ,  aav, tends toward i n f i n i t y .  
However, equation (22) w i l l  not  be s t r i c t l y  appl icable  now. With 
H 1 1  vc > uth, equation (22) gives negative values  of Q s ince  - - 

is now less than zero. Thus, t o  explain the  reason f o r  'c 'th 

an i n f i n i t e  separat ion,  reference w i l l  be made t o  Figure 17. A s  

a concentration wave of ve loc i ty  vc  moves through the column, a 

hot  thermal wave w i l l  eventual ly  overtake it i f  t h e  c o l u m  is 
long enough. 
t h e  s o l u t e  speeds up t o  p t ,  i t  f inds  i t s e l f  immediately in  a cold 
region and must slow t o  
thermal weve. 

I\n example would be  t o  move a hea t  source along 

c 

c 

A t  t h i s  point  the  concentration wave is  trapped. I f  

c 
pc and be overtaken by the  same hot  

Likewise, a concentration wave of ve loc i ty  u: w i l l  
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CYCLING ZONE SEPARATIONS 249 

eventually overtake the leading e d p  of a s imi la r  hot thermal wave 

and also become trapped. Thus, as Figure 17 shows, e s s e n t i a l l y  

a l l  the s o l u t e  is forced t o  exi t  the colum with the leading edge 
of the  hot  thermal wave and l i t t l e  o r  no so lu te  exits with the 

leading edge of the  cold thermal wave. 

e s s e n t i a l l y  i n f i n i t e .  
zone adsorption i n  t h e  t rave l ing  wave mode.Note t h a t  the  above 
diecussion per ta ins  only t o  conditions where uc > uth > u,. 

t h e r d  wave veloci ty ,  uth, is e s s e n t i a l l y  i n f i n i t e .  The theorer- 

i ca l  development presented i n  Figures 15 and 16 is equal ly  applic- 
ab le  t o  the d i r e c t  mode except t h a t  the thermal wave front0 are 
vertical instead of s lanted.  
equation (22) i a  the  same f o r  the  d i r e c t  mode as the  t rave l ing  

The meparation f a c t o r  is 
This  is t h e  p o t e n t i a l  power of cycling 

H C 

As explained earlier i n  the  d i r e c t  mode of operat ion the 

The def in i t ion  of Q found i n  

L 

z a z w 
J 
J 

X 
a 
a 
- 

L 

N 

0 

FIGURE 17 

Charac te r i s t ic  Lines Showing case of I n f i n i t e  Separation. 
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250 WANKAT, DORE, AND NELSON 

wave ED&. 
inherent ly  not  as good as those obtained i n  the  t rave l ing  wave 
mode. Since uth -+ -, uc can never be greater  than uth and 
i n f i n i t e  separat ions of the kind discussed i n  regard t o  Figure 1 7  
are not  porr ible .  Also, reference t o  equation (22) shows t h a t ,  
with uc and 
poorest reparat ion is obtained when uth -+ - as i n  the  d i r e c t  
uode . 

H m v u r ,  eeperationr ur ing the d i r e c t  mode are 

H 

H C uc held constant, the  highest value of Q and thus the  

Thin, then, i r  the  b a s i s  of the  loca l  equilibrium model. 
S t a r t i n g  with maor and energy ba lmces ,  a t h e o r e t i c a l  predict ion 
has been obtained f o r  the  exit s o l u t e  concentration from a 
packed columu. 

s t i p u l a t i o n  of l i n e a r  irotherrrm, t h i s  model, as presented, i n  
highly ideal ized.  
column8 i n  a e r i e s  and by w i n g  non-linear isotherma such as the 
Reudl ich  irotherm (q - A(c ) ). 

world qua l i ta t ive ly .  

With the  asrumptions used and the 

However, by expanding the theory t o  systems of 

* k  This theory models the real 

EXPERIMENTAL SUPPORT OF L O W  EQUILIBRIUM 

Baker and Pigford" r tudied the  reparat ion of acetic ac id  
from water on act ivated carbon t o  demonatrate the  f e a a i b i l i t y  of 
cycling zone adsorption and of the  l o c a l  equilibrium theore t ica l  
uodel. 

d i r e c t  (standing wave) thermal mode. 
is s imi la r  t o  the one shown i n  Figure 14a previously. I n  Figure 
18, non-linear Freudlich irotherrrm were w e d  i n  the  l o c a l  equil- 
ibrium modal to prndict  tha effluent concentration. Note that 
even with the non-linear ieothermr, the t h e o r e t i c a l  r e r u l t e  are 
s imi la r  t o  those of Figure lbb. 
w e r e  approximately 1000-1200 rec. long. I n  the f igure the  
da ta  f o r  the  cold half-cycle has been s h i f t e d  one ha l f  cycle 
forward. I f  the  experinmntal da ta  had been p lo t ted  chronologically, 
the cold half-cycle would have begun at  about 1100 sac. instead of 
zero tiole. The theore t ica l  high and low concentrations follow the  

Figure 18 shows t h e i r  r e s u l t s  f o r  a s ingle  z m e  i n  the 
This process arrangement 

Hot  and cold half-cycles 
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0.1 € 

u a = 0.12 
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r Experiment .------- 
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- 

COOL .ED 

I I I 
I 400 800 I 200 I 

TIME, SEC. 
FIGURE 18 

Eff luent  Concentration P r o f i l e  f o r  a Singel  Zone System i n  the 
Direct Winre Mode: 
Concentration - OIP6f0N, Frequency = 0.03 cyclesfmin, Activated 
Carbon Adsorbent. 

T - 3.5'12, '$ - 58.9 'C,  Acetic Acid Feed 

oxpected co (1/Q) and coQ values i f  Q 2 0.4 f o r  the  process s ince  

uth + - and uth >> vc. 
q u d i t a t i v a  agreement with theory; however, the e f f e c t  of 
neglect ing dispersion terrae i n  the  l o c a l  equilibrium model is 
evident in the rounded experimental peaks. 

H The experimental r e s u l t s  are i n  good 

Figure 19 rhowr experimental r e s u l t s  comparing the d i r e c t  and 
t rave l ing  winre mode. Again, the system involves the separat ion of 
acetic ac id  from water m d  both modes used a single-zone process 

s imi la r  t o  Figurn. 14. m d  14b. The t h e o r e t i c a l  and experimental 
r e s u l t s  i l l u s t r a t e  the inherent s u p e r i o r i t y  of t h e  t rave l ing  w a v e  

mode over t h e  d i r e c t  mode as noted earlier. 
f igure,  the da ta  f o r  the cold half-cycle has been s h i f t e d  by one 
ha l f  cycle. 
t r a t i o n  is seen t o  approach co f o r  both modes of operation. 

Aa i n  the  previous 

A t  the  end of each half-cycle the  e f f l u e n t  concen- 
Ae 
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0.25 

0 9 0.20 
LL 
0 
p 0.15 + 
1 a 
2 0.10 
U 
0 z 

0.05 

0.X 

Comparison of Direct 
System: TC - 3.5.C. 
0.0610N. Frequency - 
Adsorbent .I1 

and Traveling Wave Modes f o r  a Singe1 Zone 
TH - 58.9.C, Acetic Acid Feed Concentration - 
0.03 Cycles/min., Activated Carbon 

explained i n  t h e  t h e o r e t i c a l  development and i n  the CCD sec t ion ,  

t h i s  is caused by s o l u t e  molecules being overtaken by mre than one 

thermal wave before e x i t i n g  the  coluun. To a l l e v i a t e  these regions 

of no separat ion or "shoulders", shor te r  cycle tims could be wed.  

Other models and theorias  have been advanced t o  explain t h e  

mechanism of cycling zone adsorption. Gupta and Swaedl4 and 
Meir and Lavie15 have proposed more mathematical models u t i l i z i n g  

the concepts of l o c a l  equilibrium. However, Baker tmd Pigford 's  

model was presented above because of i ts  r e l a t i v e  s impl ic i ty  m d  

lack of extensive numerical calculat ions.  
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COLUMN APPLICATIONS OF CYCLING ZONE ADSORPTION 

Many re sea rche r s ,  bes ides  Baker and P ig fo rd ,  have u t i l i z e d  

t h e  cyc l ing  zone adsorpt ion technique t o  experimental ly  

i n v e s t i g a t e  e x i s t i n g  commercial s epa ra t ions .  
work of Van d e r  Vlist ,16 Busbice and W a r ~ k a t , ~ ,  and Ginde and Chu 

are rep resen ta t ive  of t h e  v a r i e d  p o s s i b l e  a p p l i c a t i o n s  of cyc l ing  

z m e  adsorpt ion and two of t hese  a r e  amenable t o  comparison wi th  

t h e  l o c a l  equ i l ib r ium model. 

The experimental  
1 7  

V a n  de r  V l i s t M  s t u d i e d  t h e  sepa ra t ion  of oxygen and n i t rogen  

from a i r  using a molecular  sieve adsorbent.  

p r e f e r e n t i a l l y  r e t a ined  n i t rogen  at low temperatures and 

desorbed n i t rogen  a t  h ighe r  temperatures.  Thus, gas e x i t i n g  a 
cold region had a h ighe r  concentrat ion of oxygen and gas  l eav ing  

a h o t  region had a r e l a t i v e l y  lower concentrat ion of oxygen. 

A two zone d i r e c t  mode system waa used. 

two fixed-bed columns were cycled as s i n e  waves and t h e  temperature 

of each zone w a s  180' ou t  of phase wi th  t h a t  of t h e  o the r .  

20 shows t h e  experimental  r e s u l t s  f o r  t h i s  two zone system. A 
maximum sepa ra t ion  f a c t o r  f o r  oxygen of 10.6 w a s  achieved. 

Observe t h a t  t h e  shape of oxygen concent r a t i o n  curve resembles 

t h a t  obtained by Baker and P ig fo rd  i n  Figure 18 f o r  t h e i r  

s epa ra t ion  of a c e t i c  ac id  and water. 
p o i n t s  out  one p o t e n t i a l  problem wi th  s e p a r a t i o n s  involving h igh  

s o l u t e  concen t r a t ions  and gaseous components. The a l t e r n a t e  

adsorpt ion and deso rp t ion  of s o l u t e  and expansion and con t r ac t ion  

o f  gas due t o  temperature cyc l ing  cause l a r g e  flow f l u c t u a t i o n s  i n  

product streams. 

p a r t i a l l y  minimize t h i s  e f f e c t .  

The adsorbent 

The temperatures of t h e  

Figure 

Van de r  V l i s t ' s  research 

Van d e r  V l i s t  used two columns i n  series t o  

I n  t h e  cases  s t u d i e d  thus f a r  i n  connection with t h e  l o c a l  

equ i l ib r ium model, temperature h a s  been used as t h e  c y c l i c  

v a r i a b l e  t o  f o r c e  sepa ra t ion .  However, r e f e rence  t o  equat ions 

(13) - (17) and e a r l i e r  d i scuss ion  show t h a t  any thermodynamic 
v a r i a b l e  can be used i n  t h e  t r a v e l i n g  wave mode a s  long a s  t h e  

fol lowing criteria a r e  s a t i s f i e d ;  (1) t h e  s o l i d  phase concen t r a t ion  
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VOL 

I I I I I I 
1 2 3 4 5 6  

TIME IN MINUTES- I 
I 
I 
I 

70 0, 

t 
n ZONE IL 

-0 I 2  3 4 5 6 
TIME IN MINUTES- 

FIGURE 20 

Temperature and Oxygen Concentration as a Function of T ime  f o r  
Nitrogen-Oxygen Concentration as a Function of Time f o r  Nitrogen- 
Oxygen Separation: 
cycles/mln 
Adsorbent. ii 

T - 10.2'C, TH - 38.7'C, Frequency = 0.167 
45-50 me$ Linde Molecular Sieve Type 5 A 

must be a function of t h i s  var iable ,  and (2) the ve loc i ty  of the 
9 var iable  wave must be known o r  measurable. 

and Busbice" u t i l i z e d  pH as the  cyc l ic  var iable  t o  remove 

fructose and glucose from water. 

succinamyl der ivat ive of aminoethyl ce l lu lose  (DBAE ce l lu lose)  as  
an adsorbent i n  a fixed-bed column, pH waves were sent through t h e  
w l u m  
of 5.0 t o  a high pH of 8.5. 

adsorption w a s  high a t  b a s i c  pH tmd almost negl ig ib le  under acid 

conditions. Thus, re tent ion waa an approximately on-off 
mechanism. 
phase w a s  more concentrated in f ructose and glucose. In regions 

where pH was high, the  mobile phase w a s  depleted of i ts  fructose 
and glucose. 

Busbice and Wankat 

Using a dihydroxborylphenyl- 

i n  a c y c l i c  equate wave pa t te rn  varying from a low pH 
For the  sugar separat ions s tudied,  

In regions of the column where pH was low, t h e  mobile 
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CYCLING ZONE SEPARATIONS 255 

In the  discussion of t h e  l o c a l  equi l ibr ium model a condition 

f o r  maximizing separat ions was presented. 

cyc l ic  var iab le ,  t h i s  condition can be rewri t ten as 
In t e r m  of pH as t h e  

l o w  pH high pH 
VC ' 'pH ' 'c 

For the  separat ions invest igated by Busbice 
s a t i s f i e d .  

from Busbice's experimental work. 

approximately 4.0 was obtained. 

w a s  ce r ta in ly  not i n f i n i t y ,  the f igure  shows t h a t  wst of the 

fructose ex i ted  with the leading edge of t h e  low pH wave and 

l i t t l e  f ructose ex i ted  with the  high pH wave. 
mental p l o t  the cycles  were 4.4 column volumes long and there  is 
l i t t l e  ind ica t ion  of  the  "shoulders" prevalent i n  Baker and 

Pigford 's  data. 

were overtaken by only one thermal wave o r  an odd number o f  thermal 

waves. The experimental data  also shows that with per iodic  

var ia t ions  in the thenmdynamic var iab le ,  t h e  e x i t i n g  s o l u t e  

concentration is a l s o  periodic. Figure 2 1  shows t h a t  a repeat ing 

state is reached. 

t h i s  condition was 

Reference t o  Figure 2 1  shows a fructose separat ion 

A peak-to-peak separat ion of 

Although the  separat ion f a c t o r  

For t h i s  experi- 

This ind ica tes  t h a t  the  e x i t i n g  s o l u t e  molecules 

A separat ion of both glucose and f ruc tose  from water appears 

in Figure 22. This f igure  i l l u s t r a t e s  t h a t  the  two sugars 

compete f o r  the ac t ive  sites on the  ce l lu lose  packing; the 

conformation of f ructose being more des i rab le  than ' t h a t  of glucose. 

As a r e s u l t ,  the separat ion fac tor  f o r  f ructose of 3.5 is not 

q u i t e  as good BB t h a t  f o r  f ructose alone. 

ca l led  "shoulders" are very pronounced due t o  the  long cycles  of 

7.8 column volumes. This ind ica tes  t h a t  some of t h e  e x i t i n g  

so lu te  molecules were overtaken by two thermal waves o r  a mul t ip le  

of two thermal waves. 

s i t u a t i o n  and improve the average separat ion as  Figure 2 1  

indicated. With regard t o  p o t e n t i a l  multi-c-onent separat ions,  

i t  is important t o  observe t h a t  t h i s  f igure  shows no tendency f o r  

the separat ion of glucose from fructose;  both sugars e x i t  t h e  col~ran 

In Figure 22 the  so 

Shorter  cycle  times would correct  t h i s  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



256 WANKAT, DORE, AND NELSON 

IO- 

9- 

8-  

PH 

7 -  

6- 

5.  

4 

CYCLES 4 ond 5 

I I 
5 10 

COLUMN VOLUMES 

FIGURE 21a 

Cycling Zone Separtion Using Fructose i n  Water. a) shows 
the pH waves. 

at the same time. However, subsequent discussion on multi- 
component separations w i l l  show t h a t  t h i s  i n  an expected r e s u l t  
f o r  the t rave l ing  wave pa t te rns  discussed u n t i l  now. The sugar 
separat ions r e s u l t s  presented here  have not  been previously 
presented i n  the open l i t e r a t u r e .  

A l l  the  experimental work, thur f a r ,  has used only one mode 
One of operation, either the  d i r e c t  mode o r  the  t rave l ing  mode. 
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CYCLING ZONE SEPARATIONS 257 

Column Volumes 
FIGURE 21b 

Cycling Zone Separation Using Fructose i n  Water. b) shows 
the cout le t  concentration f o r  Cycles 4 and 5: 
Volumes/cycle, Flow rate = 0.76 ml/min, Feed Concentration - 
4.0 mgfml, Temperature = 250C8 Morpholine and Acetic Acid are 
used as Buffers f o r  pH waves. 

4.4 Column 

might wonder i f  a combination of modes would be advantageous o r  

feasible .  Busbice and Wankat inves t iga ted  the  use of a 9 
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I I I 
5 10 I5 
Column Volumes 

FIGURE 22 

Cycling Zone Separation of Glucose and Fructose Showing Outlet  
Concentration Waves: 
4 mg/ml, Temperature = 25'C, Flow rate - 0.76 d / m i n ,  0.6 g. 
DBAE Cellulose Adsorbent. 18 

7.8 Column Volumas/cycle, Feed Concentration = 

simultaneous pH t rave l ing  wave and temperature d i r e c t  mode i n  t h e  

separat ion involving f ruc tose  and glucoee. In addi t ion,  Ginde and 
(hu17 used a combined thermal d i r e c t  and t r a v e l i n g  wave mode t o  

separate  NaCl from water. 
two columns f i l l e d  with mixed ion exchange res ins  and two w e l l -  
mixed hot and cold reservoi rs .  S a l t  so lu t ions  were enriched when 
leaving a bed of  ho t  r e s i n  and depleted when leaving a bed of co ld  
resin.  Operation e n t a i l e d  simultaneous flow of hot  NaCl  so lu t ion  

through a cold column t o  t h e  cold reservoi r .  

ha l f  cycle t i m e ,  flow from the  hot reservoi r  was diver ted t o  the  
previously cold r e s i n  bed and flow from the  cold r e r e r v o i r  w a s  

The experimental apparatus consis ted of  

Af te r  a spec i f ied  
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CYCLING ZONE SEPARATIONS 259 

diver ted t o  the previously hot  r e s i n  bed. 

i n  t h i s  manner and the separat ion f a c t o r  reported. The resin 
beds were heated by the walls of the colunm and cooled by the 

passage of cold salt solut ion.  

in the  d i r e c t  mode and adsorption in a cold bed was in the  

t rave l ing  wave mode. 
fac tors  of 1.387 fo r  t h i s  system using 0.05 M br ine  solut ions.  

Cycles were performad 

Thus, deaorption in a hot  bed WM 

Ginde and Chu obtained maximum separat ion 

MLTLTI-COMPONENT CYCLING ZONE SEPARATION 

An area of cyc l ic  eeparat ions which has received l i t t l e  

a t ten t ion  u n t i l  recent ly  is multi-component separations. 

pas t ,  experimental and t h e o r e t i c a l  work w a s  concerned only with 

removing all so lu tes  together  from the  feed. Wankat has  extended 

the  l o c a l  equilibrium model and the equilibrium stage model f o r  

s ing le  components t o  a method of separat ing multi-component mixtures 
using the t rave l ing  wave mode. 

have been presented i n  the  l i t e r a t u r e .  
zone technique may prove to  be the most useful  in the  future. 

I n  t h e  

0 

As of ye t ,  no experimental r e s u l t s  

This aspect of t h e  cycl ing 

Both of the cycl ing zone models predict  t h a t  so lu tes  can be 

recovered individual ly  i f  t h e  c y c l i c  var iab le  is inpbt  i n t o  the  

colrmrm i n  a series of s t e p s  (see Figure 23) instead of as a 
square wave. For each chemical system, the s t e p  s i z e s  must be 
choaen so tha t  some components w i l l  move f a s t e r  than t h e  wave 

veloci ty  and some slower. By having appropriate s t e p  s i z e s ,  a 
multi-component separat ion may be obtained with each component 

concentrating a t  t h a t  s t e p  where i t o  wave veloci ty  f i r s t  b e c o n s  

f a s t e r  than the ve loc i ty  of the c y c l i c  var iable .  
Aa an example, consider the separat ion of two components, A 

and B, by adsorption from a non-adsorbed carrier with temperature 

as the  cyc l ic  var ible .  
absorbed than B a t  a l l  temperatures and t h a t  both are l e a s  

s t rongly absorbed as temperature increases. 

c o l m  is as shown i n  Figure 23 with temperatures TC, T1, and 

T2 input  in t h a t  order. 

Assume component A is more strongly 

The feed t o  the  

A t  the  coldest  temperature, TC, both A 
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FIGURE 23  

WANKAT, WRE, AND NELSON 

Feed Temperature P r o f i l e  f o r  Two Solutes in Multi-component 
Separation. 8 

and B move slower than the temperature wave and begin t o  f a l l  
behind the TC wave u n t i l  they are  in the T1 region of the wave. 
The temperature T1 is chosen so t h a t  A now moves f a s t e r  than the  
thermal wave and B mwes slower. Aa a r e s u l t ,  coaponent B f a l l s  
behind i n t o  the  T2 p a r t  of the wave and component A s tays  at the  
T1 wave front .  
T1 wave front  s ince the thermal wave overtakes a l l  A a t  TC and i e  

overtaken by a l l  A at  T1. 
both components move f s e t e r  than the  thermal wave. 
w i l l  now concentrate a t  the T2 wave front  while component A 
moves past  t h i s  thermal wave t o  the T1 wave front .  
is long enough and the times f o r  each temperature are set properly, 
very l a rge  separat ions should occur. 
presented i n  the l o c a l  equilibrium t rave l ing  wave mode sect ion.  

Component A w i l l  tend t o  be "trapped" a t  the  

The temperature T2 is chosen so t h a t  
Component B 

I f  the colrmn 

This argumnt is l i k e  t h a t  

I f  more than two components are preesnt ,  the feed can still 

be separated i f  addi t ional  temperature plateaus are added. A 
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CYCLING ZONE SEPARATIONS 261 

separat ion can a l s o  be obtained by using a continuous change i n  
t h e  feed temperature between TC and T2 ( e i t h e r  l i n e a r  or 
non-linear). 
t rate a t  t h e  temperature where i t  moves at the same veloc i ty  as the  

thermal wave. 

temperature t o  obtain the saum separat ion.  

In  t h i s  case,  each component w i l l  tend t o  concen- 

Other cyc l ic  var iab les  may be used ins tead  of 

The l o c a l  equi l ibr ium theory of Baker and Pigford" can 

be e a s i l y  w d i f i e d  t o  pred ic t  multi-component separat ions 

using an i n l e t  temperature p r o f i l e  aa shown i n  Figure 23. 

been done by Wankat with the  s implifying assumption8 of l o c a l  

equi l ibr ium and l i n e a r  adsorpt ion isotherms. In  addi t ion,  a x i a l  

dispers ion,  heat of adsorption, and solute-solute  i n t e r a c t i o n s  

are neglected. These are reasonable assumptions f o r  a system with 

low s o l u t e  concentrations and r e l a t i v e l y  small separat ions.  This 
s impl i f ied  model pred ic t s  t h a t  a l l  of camponent A w i l l  exit a t  a 
point  i n  time and a l l  of component B w i l l  e x i t  a t  a d i f f e r e n t  
point  ( i n f i n i t e  separat ion) .  
cycle. 

because of dispers ion e f f e c t s  and non-linear isotherms. 

This has  
a 

There i s  no A o r  B i n  t h e  rest of t h e  

I n  prac t ice  the  i n f i n i t e  separat ion w i l l  not occur 

To obta in  a more realistic w d e l  which accounts f o r  dispersion. 

the equi l ibr ium s tage  w d e l  can be  extended t o  multi-component 

cycling zone separat ion.  

mate f o r  continuous separat ions,  i t  i s  r e l a t i v e l y  accurate  when 
there  are a la rge  number o f  stages and t r a n s f e r  s t e p s  per  cycle. 
Using the s m e  aasumptions s t a t e d  previously f o r  CO models, very 
l a r g e  separat ions can be achieved. An example of r e s u l t s  of t h i s  
w d e l  is shown i n  Flgure 24 f o r  a system of t h r e e  

nonadsorbed carrier. 
not  i n f i n i t e .  
thennal wave is a major l i m i t i n g  f a c t o r  on the separat ion.  

an t ic ipa ted  tha t  t h i s  system could be f u r t h e r  optimized t o  
increase t h e  Separation. 

Although the  CCD-model i e  only approxi- 

s o l u t e s  i n  a 
The separat ion here  I s  good but c e r t a i n l y  

The overlap of peaks due t o  dispers ion of the 
It IS 

There are some important restrictions which must be met i f  a 
The multi-component system is  t o  be meparated by t h i s  technique. 
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TRANSFER STEP NUMBER (TIME) 

FIGURE 24 

Results of staRes Theory Calculation for Separation of Three Solutes. 
160 s tages ,  Tc 

Kc = 0.3333 + 0.50333T.' 
0 ,  T1 - 100, T2 = 250, T3 - 400, Sc = 40, S1 - 32, 

concentration wave v e l o c i t i e s  of each component m u s t  be d i f f e r e n t  

and must vary appropriately with the c y c l i c  var iable .  

a series of s t r i n g e n t  r e s t r i c t i o n s  which w i l l  produce a good 
separat ion are elucidated by Wankat.' A l l  por t ions of the cycle 

must las t  a long enough period of time so t h a t  the  thermal waves 
a re  reasonably developed. 
enough t o  prevent the  t r a i l i n g  edge of the  slower moving component 
B fromoverlappingwith t h e  leading edge of the  f a s t e r  moving 

component A. Also, temperature T must be large enough t o  1 
prevent the t r a i l i n g  edge of the f a s t e r  moving component A 

from overlapping t h e  leading edge of  the  slower moving component 

B. There are a l s o  severa l  less i n t u i t i v e  r e s t r i c t i o n s .  The more 

In  addi t ion,  

The sum of TC + T2 must be la rge  
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CYCLING ZONE SEPARATIONS 263 

components in t h e  system the more r e s t r i c t i o n s  present .  Any 

method which allows these r e s t r i c t i o n s  t o  be s a t i s f i e d  w i l l  improve 
both the maximum p u r i f i c a t i o n  and reso lu t ion  of t h e  components. 

These theor ies  show the  f e a s i b i l i t y  of multi-component 

separa t ions  by the  cyc l ing  zone technique. As the  number of 

components increases  the r e s t r i c t i o n s  become more s t r i n g e n t ,  but  

t h e o r e t i c a l l y  any number of components can be separated as long 

as  t h e i r  d i s t r i b u t i o n  c o e f f i c i e n t s  are d i f f e r e n t  from each o t h e r  

and are temperature dependent. 

are a lso  v a l i d  f o r  systems using c y c l i c  v a r i a b l e s  

temperature. 

The predic t ions  presented here  

o t h e r  than 
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NOMENCLATURE 

The nomenclature used f o r  the l o c a l  equilibrium theory follows 
tha t  of Baker and Pigford". 
staged equilibrium theory follows t h a t  of Wankat 
e s s e n t i a l  p a r t s  of these nomanclatures are repeated below. 

Local Equilibrium Theory 
A - Solid-fluid equilibrium dis t r ibu t ion  paramcter,units depend 

The nomenclature for  the  
The 8 

- 
m function 

2 Dm - maas molecular d i f f u s i v i t y ,  cm /min 
DT - thermal molecular d i f f u s i v i t y ,  cm / d n  
ED - eddy axial dispers ion,  cm / d n  
c - f l u i d  concentration, moles/& 
c 

2 
2 

* - f l u i d  concentration in equi l ibr iumwith  wolid phase concentra- 
t ion ,  moler/& 

2 h - heat  t r a n s f e r  coef f ic ien t ,  cal/(cm )(min)(*C) 
k - exponent in Freundlich isotherm 
C - heat capacity, cal/(gm) ('C) 
T - temperature *C 

L - length of bed, cm 

q - solid-phase concentration, mollkg of dry e o l i d  
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t = time, min 

v - i n t e r s t i t i a l  f l u i d  ve loc i ty ,  cm/min 
z = a x i a l  dis tance,  cm 

Greek Letters 

a = i n t e r p a r t i c l e  void f rac t ion  
E - i n t r a p a r t i c l e  void f rac t ion  

v - wave ve loc i ty ,  cmlmin 

pS = s t r u c t u r a l  densi ty  of s o l i d ,  kglcm 

Pf = f l u i d  dens i ty ,  kg/cm 
aAv - average separat ion f a c t o r  

3 
3 

Subscripts  

C - cold 
H = hot 

c - cancentrat ion r e l a t e d  

s - s o l i d  

th = thermal 
1 ,2 ,3  = r e f e r  t o  conditions a t  temperatures T1, T2, T3 
f = feed condition 

w = tube w a l l  surroundings 

Superscript s 

C - cold 
H = hot 

Equilibrium Staged Theory 

A = thermal wave ve loc i ty  defined by eq. 9 
CpM, Cps, CpT = thermal conduct iv i t ies  of mobile phase, s o l i d  

K - d i s t r i b u t i o n  coef f ic ien t  - conc s o l u t e  i n  mobile phase/conc 
phase and tube o r  colunm wall, cal/g°C 

so lu te  in s t a t i o n a r y  phase. 

N - mass of s o l u t e  in s t a g e ,  g 

T = temperature, O C  
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VM, Vs - volume of mobile and stationary phases per stage, m l  

f - fraction of solute in mobile phase, defined by eq. 10 
p,; ps  - densities of mobile and solid phases, g/ml 

Subscrip ts 

A,J,C - components A,B,C 

i - number of  stage 

S - transfer step number 
Sc, S1, S 2 ,  S3 - number of transfer steps at temperatures, TC' 

TI' T2' Tg 
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